
Given is the following assembly program:

0x00 ldi %r2, 1

0x04 ldi %r1, 1

0x08 mul %r2, %r2, %r0

0x0C sub %r0, %r0, %r1

0x10 cmp %r3, %r0, %r1

0x14 jgt %r3, -16

The first column of a line denotes the address of an instruction in memory, the second column the kind of instruction,
and everything else that follows on a line are the operands.

Exercise 4

Use the instruction set architecture in Section 1 to translate the assembly to machine instructions. The machine instruc-
tions must be written in binary format. Use ’X’ to denote unused bits. A register maps to its corresponding binary num-
ber. For example, the assembly instruction add %r7, %r8, %r9 translates to 00001001110100001001XXXXXXXXXXXX.

Submission

Hand in a plain text file with ONLY one machine instruction per line. Don’t put the address before the instruction.

Exercise 5

Assume that register %r0 contains 2 before the program is executed. What would be the value in register %r2 once the
program reaches the instruction at address 0x18, i.e. the branch at address 0x14 is not taken. What would be the value
in %r2, if %r0 would contain 3, 4, 9?

Submission

Hand in a plain text file with the corresponding values per line, i.e. the value for 2 on the first line, the value for 3 on
the second, etc.

Exercise 6

Assume that register %r0 contains 1 before the program is executed. Given the microarchitecture in Section 2 and the
control unit’s state machine in Section 3, write down the values of the control unit’s output signals for each executed
instruction in the following order: imm, alu, regw, branch.

Submission

Hand in a plain text file with the values for each executed instruction per line.

1



1 Instruction Set Architecture

add - Add Instruction

031 27 26 22 21

1 rD

17 16 12 11

rA rB

rD← rA + rB

The sum (rA) + (rB) is placed into rD. No other registers are altered.

cmp - Compare Instruction

031 27 26 22 21

3 rD

17 16 12 11

rA rB

if rA < rB then rD[0]← 1 else rD[0]← 0
if rA > rB then rD[1]← 1 else rD[1]← 0
if rA = rB then rD[2]← 1 else rD[2]← 0
rD[3− 31]← 0

The contents of rA are compared with the contents of rB, treating the operands as signed integers. The result of the
comparison is placed into the three lowest order bits, and all other bits are cleared. No other registers are altered.

jgt - Jump-Greater-Than Instruction

031 27 26

immediate

22 21

4 rD

if rD[1] = 1 then PC ← PC + immediate

If rD[1] is set, PC is set to (PC) + (immediate). The immediate is treated as a signed integer. No other registers are
altered.

ldi - Load Immediate Instruction

031 27 26

immediate

22 21

0 rD

rD← (0|immediate)

The immediate is placed into rD[0-21]. The higher order bits of rD are cleared. No other registers are altered.

2



mul - Multiplication Instruction

031 27 26 22 21

2 rD

17 16 12 11

rA rB

rD← rA[0− 15] ∗ rB[0− 15]

The 32-bit operands are the contents of the low-order 16 bits of rA and rB. The low-order 32 bits of the 64-bit product
rA * rB are placed into rD. The low-order 32-bits of the product are independent of whether the operands are regarded
as signed or unsigned 32-bit integers. No other registers are altered.

sub - Subtraction Instruction

031 27 26 22 21

5 rD

17 16 12 11

rA rB

rD← (rA)− (rB)

The difference (rA) - (rB) is placed into rD. No other registers are altered.

3



2 Microarchitecture

Register
File

Instruction
Cache

Program
Counter IR

O
P
C

rD
rA
rB

Control
Unit

A
L
U

M
U
X

M
U
X

A
D
D

A
D
D

4

Data

branch

a
l
ur
e
g
w

i
m
m

o
p
c

0

1

0

1

Given a program counter, i.e. a memory address, the cpu loads an instruction from the instruction cache into the
instruction register. The control unit receives the opcode as input from the instruction register, and depending on the
kind of instruction sets its output signals (regw, imm, alu, and branch) accordingly. See Section 3 for the control unit’s
state machine.

4



3 State Machine

fetch

decode

add

opc=1

cmp

opc=3

jgt

opc=4

ldi

opc=0

mul

opc=2

sub

opc=5

aexec

imm=0/alu=0 imm=0/alu=1

bexec

imm=0/alu=2 imm=1/alu=3 imm=0/alu=4 imm=0/alu=5

wb1

regw=1

wb0

regw=0

branch=1 branch=0

5


