\begin{enumerate}[label=\arabic*.] \item \[ f(x) = ln\left(\frac{1}{x^2}\right) \] La $u = \frac{1}{x^2}$ Jeg bruker kjerneregelen: \begin{align*} \frac{dy}{dx} &= \frac{dy}{du} \cdot \frac{du}{dx} \\ &= \frac{d}{du} ln(u) \cdot \frac{d}{dx} \frac{1}{x^2} \\ &= \frac{1}{u} -2 \frac{1}{x^3} \\ &= \frac{1}{\frac{1}{x^2}} -2 \frac{1}{x^3} \\ &= x^2 -2 \frac{1}{x^3} \end{align*} \item \[g(x) = \frac{1 + \sin x}{1 + e^x + x^2}\] Jeg bruker kvotientregelen: $u = 1 + \sin x$ $v = 1 + e^x + x^2$ \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{ \frac{d}{dx}(u) \cdot v - u \cdot \frac{d}{dx}(v)}{v^2} \] \begin{align*} \frac{d}{dx} u &= \frac{d}{dx} 1 + \sin x \\ &= \cos x \end{align*} \begin{align*} \frac{d}{dx} v &= \frac{d}{dx} 1 + e^x + x^2 \\ &= e^x + 2x \end{align*} \begin{align*} \frac{dg}{dx} &= \frac{(\cos x)(1+e^x+x^2) - (1+\sin x)(e^x + 2x)}{\left(1 + e^x + x^2\right)^2} \end{align*} \item \[h(x) = \sqrt{1 + \sqrt{x}}\] $u = 1 + \sqrt{x}$ \begin{align*} \frac{dy}{dx} &= \frac{dy}{dv} \cdot \frac{du}{dx} \\ &= \frac{d}{du} \sqrt{u} \cdot \frac{d}{dx} \left( 1 + \sqrt{x} \right) \\ &= \frac{1}{2\sqrt{u}} \cdot \frac{1}{2\sqrt{x}} \\ &= \frac{1}{2\sqrt{1+\sqrt{x}}} \cdot \frac{1}{2\sqrt{x}} \\ &= \frac{1}{4\sqrt{1+\sqrt{x}} \sqrt{x}} \end{align*} \end{enumerate}