diff --git a/exercise3/main2.tex b/exercise3/main2.tex deleted file mode 100644 index b63e930..0000000 --- a/exercise3/main2.tex +++ /dev/null @@ -1,185 +0,0 @@ -\documentclass[12pt]{article} -\usepackage{ntnu} -\usepackage{ntnu-math} - -\author{Øystein Tveit} -\title{MA0301 Exercise 2} - -\begin{document} - \ntnuTitle{} - \break{} - - \begin{excs} - \exc{} - - \exc{} - - \exc{} - \begin{subexcs} - \subexc{} - - \begin{ssubexcs} - \ssubexc{} - \begin{align*} - {{2,3,5} \cup {6,4}} &\cap {4,6,8} \\ - {{2,4,6}} &\cap {4,6,8} \\ - \emptyset - \end{align*} - - \ssubexc{} - \begin{align*} - P({7,8,9}) &- P({7,9}) \\ - {{7,8,9}, {7,8}, {8,9}, {7,9}, {7}, {8}, {9}, \emptyset} &- {{7,9}, {7}, {9}, \emptyset} \\ - {{7,8,9}, {7,8}, {8,9}, {8}} - \end{align*} - - \ssubexc{} - \begin{align*} - P(\emptyset) \\ - {\emptyset} - \end{align*} - - \ssubexc{} - \begin{align*} - {1, 3, 5} \times {0} \\ - { \langle 1,0 \rangle, \langle 3,0 \rangle, \langle 5, 0 \rangle } - \end{align*} - - \ssubexc{} - \begin{align*} - {2,4,6} \times \emptyset \\ - \emptyset - \end{align*} - - \ssubexc{} - \begin{align*} - P({0}) &\times P({1}) \\ - {\emptyset, {0}} &\times {\emptyset, {1}} \\ - {\langle\emptyset,\emptyset\rangle, \langle\emptyset,{1}\rangle, \langle{0},\emptyset\rangle, \langle{0},{1}\rangle} - \end{align*} - - \ssubexc{} - \begin{align*} - P(P({2})) \\ - P({\emptyset,{2}}) \\ - { {{\emptyset}, {2}}, {{\emptyset}}, {{2}}, \emptyset } - \end{align*} - - \end{ssubexcs} - - \subexc{} - Because the elements in a power set can be represented as a binary tree where every leaf node is a set that has the cardinality of $1$, and that ${{x} : x \in A}$ would make up all the leaf nodes, we can reason that - \[ |P(A) - {{x} : x \in A}| = \frac{n}{2} \] - - \end{subexcs} - - \exc{} - \begin{subexcs} - \subexc{} - $\emptyset = {\emptyset}$ is {\color{red}False} because $|\emptyset| \neq |{\emptyset}|$ - - \subexc{} - $\emptyset = {0}$ is {\color{red}False} because $|\emptyset| \neq |{0}|$ - - \subexc{} - $|\emptyset| = 0$ is {\color{ForestGreen}True} because $\emptyset$ has $0$ elements - - \subexc{} - $P(\emptyset)$ is {\color{red}False} because $P(\emptyset) = {{\emptyset}}$ has $1$ element - - \subexc{} - $\emptyset = {}$ is {\color{ForestGreen}True} because the empty set is a subset of every possible set - - \subexc{} - $\emptyset = {x \in \mathbb{N} : x \leq 0 and x > 0}$ is {\color{red}False} because $x \leq 0 \wedge x > 0 \equiv \F$, which means there are no such elements, and thus the set is empty - \end{subexcs} - - \exc{} - \begin{subexcs} - \subexc{} - \begin{align*} - A \cap (\A \cup B) \\ - {x : x \in A \wedge x \in (A \cup B)} \\ - {x : x \in A \wedge (x \in A \or x \in B)} \\ - {x : x \in A} \\ - A - \end{align*} - - \subexc{} - \begin{align*} - A-(B \cap C) \\ - {x : x \in A \wedge x \notin (B \cap C)} \\ - {x : x \in A \wedge (x \notin B \wedge x \notin C)} \\ - {x : (x \in A \wedge x \notin B) \vee (x \in A \wedge x \notin C)} \\ - {x : x \in (A - B) \vee x \in (A - C)} \\ - {x : x \in (A - B) \cup (A - C)} \\ - (A-B) \cup (A-C) - \end{align*} - - \end{subexcs} - - \exc{} - \begin{subexcs} - \subexc{} - - \end{subexcs} - - \exc{} - \begin{align*} - X &= {{1,2,3}, {2,3}, {ef}} \cup {{e}} \\ - &= {{1,2,3}, {2,3}, {ef}, {e}} \\ - \\ - P(x) &= { - {{1,2,3}, {2,3}, {ef}, {e}}, - {{1,2,3}, {2,3}, {ef}}, - {{1,2,3}, {2,3}, {e}}, - {{1,2,3}, {ef}, {e}}, - {{2,3}, {ef}, {e}}, - {{1,2,3}, {2,3}} - {{1,2,3}, {e}} - {{1,2,3}, {ef}} - {{2,3}, {ef}} - {{2,3}, {e}} - {{ef}, {e}} - {{e}} - {{ef}}, - {{2,3}}, - {{1,2,3}} - } \\ - \\ - P(X \cap Y) &= P({{1,2,3}, {2,3}, {ef}, {e}} \cap {{1,2,3,e,f}}) \\ - &= P(\emptyset) \\ - &= {\emptyset} - \end{align*} - - \exc{} - \begin{subexcs} - \subexc{} - Here, the exercise says ``[\ldots] four sets $A_1$, $A_2$, $A_3$''. I'm not sure if I'm supposed to do three or four, but I'll assume three. - - \begin{align*} - A_1 \cap A_2 \cap A_3 \\ - A_1 \cap A_2 \cap \overline{A_3} \\ - A_1 \cap \overline{A_2} \cap A_3 \\ - A_1 \cap \overline{A_2} \cap \overline{A_3} \\ - \overline{A_1} \cap A_2 \cap A_3 \\ - \overline{A_1} \cap A_2 \cap \overline{A_3} \\ - \overline{A_1} \cap \overline{A_2} \cap A_3 \\ - \overline{A_1} \cap \overline{A_2} \cap \overline{A_3} \\ - \end{align*} - - \subexc{} - For each set, the amount of fundamental products is multiplied by $2$. Therefore, the amount of fundamental sets of $n$ sets is $2^n$ - - \end{subexcs} - - \exc{} - \begin{align*} - A\overline{(B\overline{C})}\overline{((A\overline{B})\overline{C})} \\ - A\overline{(B\overline{C})}\overline{((A\overline{B})\overline{C})} \\ - \end{align*} - - \end{excs} - - -\end{document}