\documentclass[12pt]{article} \usepackage{ntnu} \usepackage{ntnu-math} \usepackage{ntnu-code} \author{Øystein Tveit} \title{MA0301 Exercise 6} \usepackage{amsthm} \usepackage{mathabx} \begin{document} \ntnuTitle{} \break{} \begin{excs} \exc{} \begin{subexcs} \subexc{} In order to show that this is a partial order, the relation has to be reflexive, antisymmetric and transitive However, it is not antisymmetric because \[ 4-2 \bmod 2 = 0 \wedge 2 - 4 \bmod 2 = 0 \] \subexc{} In order to show that this is a partial order, the relation has to be reflexive, antisymmetric and transitive However, it is not antisymmetric because \[ (1,2)R(1,3) \wedge (1,3)R(1,2) \wedge (1,2) \neq (1,3) \] \end{subexcs} \exc{} \begin{figure}[H] \begin{mgraphbox}[width=5cm] \center \begin{tikzpicture}[scale=1] \tikzset{every node/.style={shape=circle,draw,inner sep=2pt}} \node (a) at (0,0) {$1$}; \node (b) at (1,1) {$2$}; \node (c) at (-1,1) {$3$}; \node (d) at (0,2) {$6$}; \node (e) at (-2,2) {$9$}; \node (f) at (-1,3) {$18$}; \draw (a) -- (b) -- (d) -- (f) -- (e) -- (c) -- (a); \draw (c) -- (d); \end{tikzpicture} \end{mgraphbox} \caption{Hasse diagram of $R$} \end{figure} \exc{} \begin{subexcs} \subexc{} In order to show that this is a partial order, the relation has to be reflexive, antisymmetric and transitive Reflexive: \begin{gather*} (a < a) \vee ((a = a) \wedge b \leq b) \\ F \vee (T \wedge T) \\ F \vee T \\ T \\ \end{gather*} Antisymmetric: Case $i$) \begin{align*} a < c \Rightarrow a \neq c \wedge \neg (a < a) \end{align*} Case $ii$) \begin{gather*} (a,b) \neq (c,d) \wedge (a=c) \wedge (b \leq d) \Rightarrow b \neq d \Rightarrow b < d \\ \therefore (a = c) \wedge (b \leq d) \Rightarrow \neg (a < c) \wedge \neg (d \leq b) \\ \end{gather*} Transitive: \[ (a,b)R(c,d) \wedge (c,d)R(e,f) \Rightarrow (a,b)R(e,f) \] This will be a proof by cases. In each case, I'm going to assume only one of the expressions in $R$ turned out true, and show that it means that at least one of the expressions will be true as a result. Case $i$ and $i$) \[ (a < c) \wedge (c < e) \Rightarrow a < e \] Case $i$ and $ii$) \[ (a < c) \wedge (c=e \wedge d \leq f) \Rightarrow a < e \] Case $ii$ and $i$) \[ (a = c \wedge b \leq d) \wedge (c < e) \Rightarrow a < e \] Case $ii$ and $ii$) \[ (a = c \wedge b \leq d) \wedge (c=e \wedge d \leq f) \Rightarrow (a=f \wedge b \leq f) \] \subexc{} \begin{figure}[H] \begin{mgraphbox}[width=5cm] \center \begin{tikzpicture}[scale=1] \tikzset{every node/.style={shape=circle,draw,inner sep=2pt}} \node (a) at (0,0) {$0,0$}; \node (b) at (0,1) {$0,1$}; \node (c) at (0,2) {$1,0$}; \node (d) at (0,3) {$1,1$}; \draw (a) -- (b) -- (c) -- (d); \end{tikzpicture} \end{mgraphbox} \caption{Hasse diagram of $R$} \end{figure} $(0,0)$ is the only minimal element and $(1,1)$ is the only maximal element in $R$. \subexc{} Since $R$ only has one minimal and one maximal element, it is a total order. \end{subexcs} \exc{} \begin{subexcs} \subexc{} This is a function because x can be expressed in terms of y Range of $f(\Z)$: $\{ x \mid \pm \sqrt{x-7} \in \Z \}$ \subexc{} This is not a function because \[ x = (\pm y)^2 \] \subexc{} This is a function because x can be expressed in terms of y Range of $f(\R)$: $\R$ \subexc{} This is not a function because \[ x = \pm \sqrt{-y^2+1} \] \end{subexcs} \exc{} \begin{subexcs} \subexc{} \[ f(x) = 2x - 3 \] One to one: \vcheck Onto: \xcheck Range of $f(\Z)$: $\{ x \mid x \bmod 2 = 1 \}$ \subexc{} \[ f(x) = x^2 \] One to one: \xcheck Onto: \xcheck Range of $f(\Z)$: $\{ x \mid \sqrt{x} \in \Z \}$ \subexc{} \[ f(x) = x^3+x \] One to one: \vcheck Onto: \xcheck Range of $f(\Z)$: $\{ x \in f(\Z) \}$ \hspace*{2cm} \fbox{See message at ovsys} \end{subexcs} \exc{} \begin{subexcs} \subexc{} \[ f(x) = 2x - 3 \] One to one: \vcheck Onto: \vcheck Range of $f(\R)$: $\R$ \subexc{} \[ f(x) = x^2 \] One to one: \xcheck Onto: \xcheck Range of $f(\R)$: $\{ x \mid x \geq 0 \}$ \subexc{} \[ f(x) = x^3+x \] One to one: \vcheck Onto: \vcheck Range of $f(\R)$: $\R$ \end{subexcs} \end{excs} \end{document}