\documentclass[12pt]{article} \usepackage{ntnu} \usepackage{ntnu-math} \usepackage{ntnu-code} \author{Øystein Tveit} \title{MA0301 Exercise 11} \begin{document} \ntnuTitle{} \break{} \begin{excs} \exc{} \[n^{n-2} = 4^{4-2} = 4^{2} = 16\] \exc{} To solve this exercise, I chose to implement the algorithm in python In order to keep track of the nodes, I have given them the following labels \includeDiagram[width=13cm, scale=1.6]{diagrams/ex2_1.tex} \break \codeFile{scripts/Kruskal.py}{python} Output: \begin{verbatim} [('a', 'b'), ('e', 'f'), ('c', 'd'), ('h', 'e'), ('b', 'c'), ('f', 'g'), ('c', 'e')] \end{verbatim} When we connect the nodes, we get the minimal spanning tree: \includeDiagram[width=13cm, scale=1.6]{diagrams/ex2_2.tex} \exc{} \begin{subexcs} \subexc{} By counting the vertices, edges and regions, we can see that \begin{align*} |V| &= 17 \\ |E| &= 34 \\ |R| &= 19 \end{align*} By applying Eulers theorem, we can confirm that this is a possible graph \begin{align*} V + R - E &= 2 \\ 17 + 19 - 34 &= 2 \\ 36 - 34 &= 2 \\ 2 &= 2 \end{align*} \subexc{} By counting the vertices, edges and regions, we can see that \begin{align*} |V| &= 10 \\ |E| &= 24 \\ |R| &= 16 \end{align*} By applying Eulers theorem, we can confirm that this is a possible graph \begin{align*} V + R - E &= 2 \\ 10 + 16 - 24 &= 2 \\ 26 - 24 &= 2 \\ 2 &= 2 \end{align*} \end{subexcs} \exc{} Every edge touches 2 regions. And every is connected to at least 5 edges. Therefore the amount of edges will be \[ E \geq \frac{53 \cdot 5}{2} = 132.5 \] Since the amount of edges has to be an integer, we can round it up to $E \geq 133$ Now we can use Eulers theorem for planar graphs to determine the amount of vertices \begin{align*} V + R - E &= 2 \\ V &= 2 - R + E \\ V &\geq 2 - 53 + 133 \\ V &\geq 82 \end{align*} Therefore $|V| \geq 82$ \exc{} \begin{subexcs} \subexc{} By flipping the matrix once vertically and once horizontally, the matrix will equal the other matrix. Because flipping a matrix is a bijective function, composing two of them will also make a bijective function. After checking that the last matrix is a valid undirected graph, it is safe to conclude that the graphs are isomorphic \[ \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \cong \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \cong \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \] \subexc{} By the same reasoning as \textbf{a)}, we have the following \[ \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \cong \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \cong \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \] \end{subexcs} \exc{} \begin{subexcs} \subexc{} \[ uv = ababbab \] \[ |uv| = 7 \] \subexc{} \[ vu = bababab \] \[ |vu| = 7 \] \subexc{} \[ v^2 = babbab \] \[ |v^2| = 6 \] \end{subexcs} \exc{} \begin{subexcs} \subexc{} \[ KL = \{ ab^2, abb^2, a^2b^2, aaba, ababa, a^2aba \} \] \subexc{} \[ LL = \{ b^2b^2, b^2aba, abab^2, abaaba \} \] \end{subexcs} \exc{} \begin{subexcs} \subexc{} \[ L^* = \{b^2\}^* \] \subexc{} \[ L^* = \{a,b\}^* \] \subexc{} \[ L^* = \{a,b,c^3\}^* \] \end{subexcs} \exc{} \begin{subexcs} \subexc{} $w$ does not belong to $r$ because $w$ is does neither fit $a^*$ nor $(b \vee c)^*$ \subexc{} $w$ does belong to $r$ because $w$ is exactly $(a \cdot 1) (b \vee c \cdot 2)$ \end{subexcs} \end{excs} \end{document}