\documentclass[12pt]{article} \usepackage{ntnu} \usepackage{ntnu-math} \author{Øystein Tveit} \title{MA0301 Exercise 12} \usetikzlibrary{automata, positioning, arrows.meta} \begin{document} \ntnuTitle{} \break{} \begin{excs} \exc{} \[ r = \{a,b\}^* a \{a,b\}^* a \{a,b\}^* a \{a,b\}^* \] \exc{} \begin{subexcs} \subexc{} \[ \{ab\} \{ab\}^* \] \subexc{} \[ a (a | \lambda) b (b | \lambda)\] \end{subexcs} \exc{} \[ M = (Q, \Sigma, \delta, s, F) \] \begin{align*} Q &= \{ s_0, s_1, s_2 \} \\ \Sigma &= \{a, b\} \\ \delta &= \begin{Bmatrix} s_0 \xrightarrow{b} s_1, \\ s_0 \xrightarrow{a} s_2, \\ s_1 \xrightarrow{a,b} s_1, \\ s_2 \xrightarrow{a} s_1, \\ s_2 \xrightarrow{b} s_2 \end{Bmatrix} \\ s &= s_0 \\ F &= \{ s_2 \} \end{align*} \includeDiagram[scale=1.6, width=10cm]{diagrams/ex3.tex} \exc{} The words $L$ can be described by the regular expression $r$ where \[ r = a^* b b^* a \{a,b\}^* \] \exc{} The words in $L$ can be described by the regular expression $r$ where \[ r = (a^* b)^3 \{ (a^* b)^4 \} \] \exc{} \begin{subexcs} \subexc{} \begin{align*} s_0 &\xrightarrow{a, 0} s_0 \\ s_0 &\xrightarrow{a, 0} s_0 \\ s_0 &\xrightarrow{b, 1} s_3 \\ s_3 &\xrightarrow{b, 0} s_3 \\ s_3 &\xrightarrow{c, 1} s_0 \\ s_0 &\xrightarrow{c, 1} s_2 \end{align*} The output would be $001011$ \subexc{} \includeDiagram[scale=1.2, width=13cm]{diagrams/ex6_b.tex} \end{subexcs} \exc{} \begin{subexcs} \subexc{} Suppose we have $a \in A, b \in B$ \begin{align*} AB^* &= \{a, ab, ab^2, ab^3, \ldots \} \\ &= \{a\} \cup \{ab, ab^2, ab^3, \ldots \} \\ &= A \cup \{ab, ab^2, ab^3, \ldots \} \\ &\Rightarrow A \subseteq AB^* \end{align*} \qed \subexc{} Since $A \subseteq B$, we can rewrite $B$ as $A \cup \overline{A}$ where $\overline{A} = \{b \mid b \in B, b \notin A \}$ \begin{align*} B^* &= (A \cup \overline{A})^* \\ &= A^* \cap \overline{A}^* \cap B_1, \qquad B_1 = \{(B^*\ a\ B^*\ a_1\ B^*) \vee (B^*\ a_1\ B^*\ a\ B^*) \mid a \in A, a_1 \in \overline{A}\} \\ &\Rightarrow A^* \subseteq B^* \end{align*} \qed \end{subexcs} \end{excs} \end{document}