
TDT4165 PROGRAMMING LANGUAGES
Scala Project

Fall 2022

1 Introduction
Scala is both a functional and object-oriented programming language. This task will introduce you to Scala
and familiarize you with some basic concepts and syntax before proceeding to the Scala project.

Relevant readings:

• the official scala documentation, at https://docs.scala-lang.org/

• the “Learn concurrent programming in Scala” PDF that is uploaded together with the project (especially
the chapters about threads).

The easiest way to run Scala is to install sbt at http://www.scala-sbt.org/.

To start a project, create a new folder with a file called Main.scala with the following content:

object Hello extends App {
println("Hello World")

}

Navigate to the folder you just created and run your code using the sbt run command in the terminal.

2 Assignment Organization and Delivery
This project consists of two deliveries, counting towards the 5 out of 7 deliveries necessary to get approved
for the exam. Additionally, to be able to attend the exam you should have at least one of the two deliveries
described in this assignment as approved.

The project shall be done in groups of maximum 3 students. In Blackboard, there will be two different kinds
of groups: Prepared and Random. The Prepared groups are for those who wish to choose their own groups,
so those who wish to be in the same group can agree to join one of these groups. The Random groups are
for those who wish to be put into a group with random members. To join these groups, join the first group
with available slots, starting from the lowest number, i.e. if Random Group 1 is full, Random Group 2 has 1
slot avaiable, and Random Group 3 is empty, you should join group 2 first.

Each delivery should also include a .pdf file containing a section for each task. For each task, the PDF
should describe the implementation, or include a screenshot of the code, as well as answer any theoretical
questions. You can use the template found on BlackBoard, under “Coursework” / “Latex template for PDFs”,
to generate your PDF file.

1

https://docs.scala-lang.org/
http://www.scala-sbt.org/


2.1 Delivery 1
Delivery 1 for the project consists of Task 1: Scala Introduction and Task 2: Concurrency in Scala.
This delivery consists of getting used to using Scala, to be able to do delivery 2 later.

For Delivery 1, please deliver a .zip file containing the file(s) for these two tasks and the .pdf file.

2.2 Delivery 2
Delivery 2 for the project consists of Project Task 1: Preliminaries, Project Task 2: Creating the
bank, and Project Task 3: Actually solving the bank problem. This delivery consists of implementing
a rigid banking system, with atomized transactions, and error handling. While it is not necessary to finish
Delivery 1 to finish Delivery 2, it is highly recommended, in order to familiarize yourself with using Scala.

For Delivery 2, please deliver a .zip file of the entire project directory with the build.sbt file as well as the
entire src/ directory inside, in addition to the .pdf file. Do not deliver the generated target and project
directories.

Figure 1 shows an example directory structure of the entire project.

Figure 1: File Structure

3 Evaluation
Each of the deliveries will have a total of 100 points. To get a delivery as “Approved”, you need at least 50
points. Maximum points for each task and sub-task are stated in the description of the exercise. You will be
awarded full score for each correct implementation of each task. Points may be deduced from this score as a
percentage of the available points for the given task in case of:

• Code that does not run without modifications, but is otherwise correct. (20% deduction)

• Implementation is correct, but is overly complex, long or redundant (20% deduction)

• Unreasonable indentation of code. (20% deduction)

2



• Functions or variables have names that are not meaningful (20% deduction)

In addition, 1 point will be deducted from each project task score for each failed test related to that task.

While there are no individual deliveries for the project, it is expected that each group member contributes to
the project, and understands how the delivered project is working, as the knowledge from this project could
be relevant later.

3



Part I

Delivery 1

Task 1: Scala Introduction (53 p)
To read about the basic Scala syntax, feel free to take a look at the Scala documentation at https://docs.scala-
lang.org/tour/basics.htmli or read the Learn Concurrent Programming in Scala.pdf that was included
with this project.

(a) Generate an array containing the values 1 up to (and including 50 using a for loop. (10p)

(b) Create a function that sums the elements in an array of integers using a for loop. (13p)

(c) Create a function that sums the elements in an array of integers using recursion. (13p)

(d) Create a function to compute the nth Fibonacci number using recursion without using memoization
(or other optimizations). Use BigInt instead of Int. What is the difference between these two data
types? (17p)

Task 2: Concurrency in Scala (47 p)
One of the most important goals in the Scala porject is to learn concurrency programming. Here, it is done
by using threads.

You can read more about how to program threads in Scala at https://twitter.github.io/scala_school/concur-
rency.html

(a) Create a function that takes as argument a function and returns a Thread initialized with the input
function. Make sure that the returned thread is not started. (10p)

(b) Given the following code snippet: (10p)

private var counter: Int = 0
def increaseCounter(): Unit = {

counter += 1
}

Create a function that prints the current counter variable. Start three threads, two that initialize
increaseCounter and one that initialize the print function. Run your program a few times and notice
the print output. What is this phenomenon called? Give one example of a situation where it can be
problematic.

(c) Change increaseCounter so that it is thread-safe. Hint: atomicity. (13p)

(d) One problem you will often meet in concurrency programming is deadlock. What is deadlock, and what
can be done to prevent it? Write in Scala an example of a deadlock using lazy val. (14p)

4

https://docs.scala-lang.org/tour/basics.html
https://docs.scala-lang.org/tour/basics.html
https://twitter.github.io/scala_school/concurrency.html
https://twitter.github.io/scala_school/concurrency.html


Part II

Delivery 2

Introduction
Traditional online banking applications are currently experiencing great competition from new players in the
market who are offering direct transactions with a few seconds of response time. Banks are therefore looking
at possibilities of changing their traditional method which involves batch transactions at given times of the
day with hours in between.

They must now update their software to adapt to the current demand, which means transactions must be
handled in real-time. Your overall task for this project is to implement features of a simplified and scaled
down real-time banking transaction system.

The code is commented with TODOs to help you find the correct place to write your code for each task.

Running the tests
The project comes with some tests to help both you and us in evaluating the project. If all tests pass, your
implementation is probably correctTM. In the project root directory (the directory with the build.sbt file)
run sbt test to install dependencies and verify that your installation works. The tests should not fail, and
not even compile (they will after task 1.3).

There is no meaningful main program in the handout, so running sbt run won’t do much. Feel free to use
it for experimenting.

Project Task 1: Preliminaries (28p)
This task will set up a few utility functions that might help you later on.

1.1 Implementing the TransactionQueue (7p)
In the file Transaction.scala you will find the definition of the TransactionQueue class. This class needs
to be implemented. The class needs a datastructure to hold the transactions; e.g., a queue is sufficient. The
functions that are defined also need to be implemented in a thread-safe manner. Wrapping existing queue
functions is encouraged.

• Define a datastructure to hold transactions.

• Implement functions of TransactionQueue in a thread-safe manner.

You are not required to use these functions later, but they might prove useful.

1.2 Account funcitons (14p)
In the file Account.scala, you will find three functions that are not implemented: withdraw, deposit and
getBalanceAmount.

• withdraw removes an amount of money from the account.

• deposit inserts an amount of money to the account.

5



• getBalanceAmount returns the amount of funds in the account.

1.3 Eliminating exceptions (7p)
We also want our deposit and withdraw functions to fail gracefully in case of errors. Make sure that illegal
transaction amounts are causing the functions to fail. Exceptions make the behavior of the program less
predictable; read the section below on the Either datatype and see how it can be used in place of exceptions
and program crashes.

If a function fails, make sure it is atomic — meaning that no money is lost or transferred in the case of a
failure. The functions also need to be made thread safe.

• withdraw should fail if we withdraw a negative amount or if we request a withdrawal that is larger
than the available funds.

• deposit should fail if we deposit a negative amount.

• Both should be thread safe.

• Both should return an Either datatype and should not throw exceptions.

Tests 1–6 should pass now.

Notes on the Either datatype
The Either type is useful to represent the fact that a function may succeed or not; it consists of a Left
and a Right type. For example Either[Unit,String] means that the type either holds nothing (Unit) or
a String. We can use this as a return type of a function, to say that “The function either returns nothing,
indicating success, or a string describing the failure”.

Choosing whether Left of Right means success is usually up to you or to conventions adopted in
your development context. For the sake of automated tests in this project, use Left to indicate
success and Right to indicate failure.

Below is an example of how Either can be used in a function.

def wants_a_positive_number(number: Int): Either[Int, String] = {
if number < 0 return Right("This is not a positive number")
Left(number)

}
...
val result = wants_a_positive_number(5)
result match{

case Right(string) => println(string)
case Left(number) => println(number)

}

Project Task 2: Creating the bank (21p)
In the Bank.scala you will find two incomplete functions.

• addTransactionToQueue creates a new transaction object and places it in the transactionQueue. This
function should also make the system start processing transactions concurrently.

• processTransactions runs through the transactionQueue and starts each transaction one at a time.
If a transactions’ status is pending, push it back to the queue and recursively call processTransactions.

6



Otherwise, the transaction has either failed, or succeeded, and should be put in the processed transac-
tions queue.

Project Task 3: Actually solving the bank problem (51p)
Back in the file Transactions.scala there is still work to be done. The run function, containing another
function and a call to that functino needs to be finished. The goal of doTransaction is to transfer money
safely, which means withdrawing money from one account and depositing it to the other account.

Each transaction is allowed to try to complete several times, indicated by the allowedAttempts variable. A
transactions status is PENDING till it has either succeeded or used up all its attempts.

If you implemented error handing with the Either datatype, you can use pattern matching. Otherwise you
may have to try/except the exceptions.

7


	Introduction
	Assignment Organization and Delivery
	Delivery 1
	Delivery 2

	Evaluation
	I Delivery 1
	II Delivery 2

