
TDT4258 Low-Level Programming

HS 2022

Lab assignment 1

ARM Assembly-Language Programming

Deadline: Fri 09 Sept 2021, 23:59

Teaching Assistants: Pavel Skipenes, Vetle Harnes
Assignment Coordinator: Roman K. Brunner

Lecturer: Björn Gottschall

Pre-amble

The labs are here for you to deepen your understanding of concepts taught in
the lecture. The goal is that you not only develop a theoretical understanding
of the matter, but also develop the technical skills to apply it in practice.

Each lab has a main project, but we also provide optional exercises for
those who want to go beyond the mandatory exercise. To pass a lab, you
only need to hand in the solution to the main project. The optional
exercises are purely for your entertainment. Some of the optional tasks are
easier than the main task; some are harder. We indicate the difficulty at
the beginning of the problem description. The easier ones can serve as entry
points, if you feel that you are not yet ready to tackle the main task. But
remember that in the end all that counts is solving the main task, as the
optional tasks do not count towards the pass/fail decision.

We assess the lab assignments on a pass/fail basis. To be allowed to sit
in the exam, you have to pass all three labs. As the assignments are part
of the evaluation, they are subject to NTNU’s plagiarism rules 1. We have
tools at our disposal and will run all submissions through plagiarism check-
ers. Copying code from current or past students is considered plagiarism.
Hence, we advise only sharing code after the deadline has passed to prevent
situations where we have to find out who copied from whom.

While copying each other is disallowed, we still encourage student dis-
cussions about your solutions. This will allow you to explore alternative
approaches and solutions and learn about the advantages and challenges of
particular implementations.

1 Description

This is the first lab out of three for this course. The aim of this lab is to
expose you to ARM assembly programming. The program you write will
communicate with different input/output devices. You will use CPUlator,
an online service, to test your programs.

2 Program development and testing frame-

work

For this assignment, you will use CPUlator, an online service that provides a
hardware simulator, editor, and debugger. CPUlator runs directly in a web

1https://i.ntnu.no/wiki/-/wiki/English/Cheating+on+exams

1

https://i.ntnu.no/wiki/-/wiki/English/Cheating+on+exams

browser, so you don’t need to install any additional software. You can access
it under

https://cpulator.01xz.net/
CPUlator allows you to simulate different ISAs and systems. The detailed

documentation on CPUlator is available at:
https://cpulator.01xz.net/doc/
You will configure it to simulate ARMv7 ISA with ARMv7 DE1-SoC

system2. The documentation for DE1-SoC is available on Blackboard3. Note
that DE1-SoC is actual hardware with different input/output devices, and
CPUlator does not simulate all of them. For this lab, we are only interested in
red LEDs and JTAG UART (Universal Asynchronous Receiver-Transmitter),
both of which are simulated by CPUlator. If you are interested, refer to the
CPUlator documentation to check which DE1-SoC devices are not simulated.

Controlling red LEDs: CPUlator simulates ten red LEDs from DE1-
SoC. These LEDs can be turned on and off by controlling the values in a
peripheral register at a specific address. The register contains one bit per
LED. If you set any of those bits to one, the corresponding LED turns on;
otherwise, it is off. You can write to the register by using an STR instruction.
You find the register’s address in the DE1-SoC manual3.

Controlling JTAG UART: On DE1-SoC, JTAG UART can be used
to transfer data between the host computer and the programs running on
ARM cores of DE1-SoC. However, CPUlator simulates this communication
with host computer by writing to and reading from a JTAG UART box
in simulator window. Like the LEDs, the JTAG UART box has its own
address, which you find in the DE1-SoC manual3. If you want to write to
JTAG UART, you need to write one character at a time to this address, and
the written text will appear in JTAG UART box.

2.1 Running a program in CPUlator

To help you get started with CPUlator, we have provided a sample ARM
assembly program test.s4. You can run this program in CPUlator to under-
stand the simulation process and to get familiar with the CPUlator features.

• You can open the test.s file by choosing “open” from “File” drop down
menu. Al- ternatively, you can also type in your program in the Editor
window.

2https://cpulator.01xz.net/?sys=arm-de1soc
3Blackboard →Labs →Lab 1 →DE1 SOC Manual.pdf
4Blackboard →Labs →Lab 1 →test.s

2

https://cpulator.01xz.net/
https://cpulator.01xz.net/doc/
https://cpulator.01xz.net/?sys=arm-de1soc
https://learn-eu-central-1-prod-fleet01-xythos.content.blackboardcdn.com/5def77a38a2f7/11563732?X-Blackboard-Expiration=1659970800000&X-Blackboard-Signature=SJcA%2B9Hq1ekDiSPvlvLJy%2BZN3K1ZGHRJoo%2FxzGkahd0%3D&X-Blackboard-Client-Id=303508&response-cache-control=private%2C%20max-age%3D21600&response-content-disposition=inline%3B%20filename%2A%3DUTF-8%27%27DE1-SoC%2520Manual.pdf&response-content-type=application%2Fpdf&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEKj%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJGMEQCIC3SixAkZz%2FnHn2QDtJImHERpj395%2FynJ4Eabviv8v%2FmAiBry7wJOCkDX1%2FWhsUF8W9WaxvsWY92krq56b8zTVeLMircBAgREAIaDDYzNTU2NzkyNDE4MyIMWoMExLNSQmct8SZeKrkEmJAp%2BceEpAwrolbL1tJ2pQtnbT3H%2Bnt6eIGOqOUob7Kwuefxaxs%2B6gyzX%2F9ZUEKZaoSQu%2FO4wPKXRDSSa1IbhJRa3dSEaQPcbWfU9a2UVJF96VmU%2BXpojVhOz94RHqoHyCiUpqhvG3expdjQQfhZjIRFDhVvMw17P06pZ321CAWPQnoeAjpaIhXxT8Wa2iAWvZME%2Fgbi9dQmMcZDo%2Fty3cZHdFbzn6pSwkZBE1%2F1n41DtkPqgkpCHO3psThnEZ6NAgbvgz%2Fq%2BqVfb73dNXkrbN42GomODTUuKruJt3NG1rFz6joiLnIzOmv1LjBEU9tgcjP7Z9auAvQ0IXZbvcYtCBJmQv7cMCHXG9hvATHFQbde5hyLoit7%2BqOvUmCLq%2FKoe9kx2A7ytGWjCax4J2yq3jMd5FmuAfzXlt4LohQmRSdfZf9gBqpemH33HD0o5ODtdn9FQSrlC3wbXiK2HtPF33WnevPRavXin4gZB9kniYD1ggF3Zhr74mDmSMkdsBAVN10VxnapZP6i%2BfvD2tiiCU6gQSfNvB6kMwrMSL5uLg7Hie0Av8k%2FWLpW36CqCbBZzmlV2Pd3Jbmj%2Bij7%2FyrmHG0VrELIuamA0xYAasN%2F%2BGadQdbVx4wHonLVP9tD44dSsbJfkAsqUHvieqmJCF9iLmPBuJ3imLPa5LUqGGIDcRbAi9e2Y%2FD%2BfxoLSUBjAj%2BaowXuZ8kP6%2Fdw5cGg9gHzjAhMr6kMPGXTMZetwMDAqk4ifuMxvfCh4dEw347DlwY6qgEHTcPpa1PAzvXSEtkQw2rQbJfBx2PNhlJCgomkfR2718eDnI%2BtwxQeWaJ%2BFv3wpsdNxZiYloEXRiXu8l8ijKyyD7HK8V%2FlC5Uu0INzeqyO1GmLs6qvAy2aA2HGj1hkCyF08VGGldzCuZxctkXeiRaKnQhUECVaNAcGd7v6BACQnuFJ%2FeVkhBhe1UrrXHRR4%2BD%2BDaNRiApSNP8XwYr6eClCD2hlNAgyjtS4jw%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20220808T090000Z&X-Amz-SignedHeaders=host&X-Amz-Expires=21600&X-Amz-Credential=ASIAZH6WM4PLZOAPRPNN%2F20220808%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Signature=4f103e0d862232bffd45307434280de31e92e5ffe4d9eadf89ccc69347d68e73
https://ntnu.blackboard.com/bbcswebdav/pid-1799304-dt-content-rid-49965967_1/xid-49965967_1

• Once you are finished writing the program, hit “Compile and Load(F5)”.
It will compile/assemble your program and any warnings or error mes-
sages will appear in “Messages” window at the bottom of the screen. If
the compilation is successful, “Compile succeeded” will appear in this
window. In addition to compilation, your program will be loaded into
the memory and will be ready for execution.

• To execute the program in one go, hit “Continue”. It will execute your
program, and you can inspect the state of registers (window on the
left), memory (one of the tabs in the middle window), and IO devices
(window on the right).

• Instead of executing your program at once, you can single step through
it by hitting “Step Into”. This will execute only one instruction at a
time, thus you can inspect the state of registers, memory, and IO de-
vices after every single instruction. This feature is useful for debugging
your programs.

For more details on CPUlator features, refer to its documentation.
How to terminate an assembly program: Notice that the last in-

struction in test.s is an unconditional branch “b” that jumps to itself. This,
effectively, takes the program into an infinite loop. In its absence, the pro-
gram would have continued to execute sequentially, treating the data in .data

section or whatever comes afterwords as instructions until encountering an
error condition. It can overwrite the results generated by the legitimate code
you want to execute. To avoid that, we put the program in an infinite loop so
that you can inspect the results while your program is spinning in the loop.

3 Main Task: Palindrome Finder

You have to write a palindrome finder in ARM assembly that determines
whether or not a given input is a palindrome. A palindrome is a number,
word, phrase, sentence, or another sequence of characters that reads the same
backward or forward. A palindrome is also case-insensitive, and spaces are
ignored. For the purpose of this assignment, the input is restricted only
to contain alpha-numeric characters and spaces (any combination) without
punctuation, special characters, or umlauts. For example, ‘ad8dF90’ and
‘e082 2F01’ are valid inputs as they are a sequence of characters and/or
spaces, but they are not palindromes.

Some rules to follow on palindromes and inputs:

3

• The valid characters are as follows: ‘a-z’, ‘A-Z’, ‘0-9’ and ‘ ’ (space).
Special characters will not be used in test inputs. So it doesn’t matter
whether your code handles them or not

• A valid palindrome can only be a single word, sentence (words separated
by spaces), numbers, or alphanumeric. Examples of valid palindromes:
“level”, “8448”, “step on no pets”, “My gym”, “Was it a car or a cat
I saw”. Examples of strings that are not a palindrome: “Palindrome”,
“First level”

• The shortest palindrome is at least two characters long

• Palindromes are case insensitive, so “KayAk” and “A9c9a” are valid
parameters

A good approach to writing an ARM assembly program is to first come
up with a high-level algorithmic solution or implementation (C, C++, Java
etc.). It is much easier and quicker to correct all the control flow and data
manipulations in a high-level representation than in assembly. Once the
high-level implementation for a program is correct, you can translate it to an
equivalent ARM assembly program, statement-by-statement. Before trans-
lating, you should test your high-level language program and ensure that
it is working correctly before starting on the ARM code. To help you get
started, an outline palin finder.s is supplied. It is not required to stick
to the provided structure (see Section 4 for further details). We recommend
structuring the code into functions for ease of development and readability.

Note: You only need to submit the ARM assembly code. The high-level
language code is just for your own reference. Please comment on your ARM
assembly code appropriately. As a model for creating and commenting on
your ARM code, have a look at the supplied file test.s.

3.1 Input to Palindrome Finder

The input to the Palindrome Finder program is a string, phrase, or sentence.
The supplied palin finder.s file already contains example inputs in the
.data section. This is the input that is put into memory before execution
starts and that you will test for a possible palindrome. Defining the input in
the data section with .asciz ensures that it will be null-terminated in memory
(a zero byte marks its end). Your program must accept variable width (run-
time checked) inputs. We also encourage you to use several different inputs
to test your program. When you submit your code, the input label in
the data section must be the same as we supply in palin finder.s

4

file. Your program can have undefined behavior for invalid inputs (inputs
containing invalid characters outside the definition from the beginning of
Section 3).

3.2 Output of Palindrome Finder

Your program should display the outcome in two different ways: 1) light up
LEDs and 2) write to JTAG UART box.
Light up red LEDs: If the input word is not a palindrome, you need to
light up five leftmost red LEDs; and if it is a palindrome, you should light
up the five rightmost red LEDs.
Writing to JTAG UART box: If the input word is not a palindrome, the
program should print the message “Not a palindrome” in the JTAG UART
box; otherwise, it should print “Palindrome detected”.
Refer to Section 2 to check how to light up LEDs and write to JTAG UART
box.

3.3 Optional Tasks

• [EASY]: Write the numbers from (0, 100(using the JTAG UART box.
The output should be calculated, not hard coded. If you try to minimize
the number of executed instructions, what’s the minimum you achieve?

Sample (partial) output: 0, 1, 2, 3, . . . , 98, 99

• [EASY]: Given an input string (allowable characters are [0-9A-Za-z]
and the simple whitespace ‘ ’), your program should reverse the order
of words (strings separated by whitespace (‘ ’)), as well as reverse the
order of characters in each word. Print the final solution using the
JTAG UART.

Sample input: “Hello World”

Sample output: “dlroW olleH”

• [MEDIUM]: Your program should use the stack to store a list of
integers li and a single integer d. You can assume that the list of
integers is always sorted from smallest to largest integer. The goal is
to find the indices of two entries in the list that sum up to d. If your
program does find such two integers, output the two indices using the
JTAG UART, otherwise output -1, -1.

Sample input: li: [1, 3, 4, 7, 9, 12], d: 11

Sample output: 2, 3

5

• [HARD]: Your program should analyze a string and find the longest
palindrome in it. Note that the midpoint for a potential palindrome
can lie at any position in the string. What’s the most efficient imple-
mentation you can come up with in assembly?

Samples: for “AbbaCCdccA” the solution would be “aCCdccA”

4 Submission

Submit your commented assembly code file palin finder.s before the
deadline on Blackboard. Ensure you haven’t changed the input label (name
of the variable) in the .data section!

5 Assessment

This assignment will be evaluated on a pass/fail basis. Your program will be
judged on correctness and completeness, so please make sure that all above
requirements are respected and functional.

Commenting on your code and keeping it tidy is very important. Helping
us understand what you did, supports us in assessing your work – we can
only give points for what we understand.

6 Similarity Checking and Plagiarism

You must submit your own work. You must write your own code and not
copy it from anywhere else, including your classmates, internet, and auto-
mated tools5. Failure to do so is cnosidered plagiarism. Detailed guidelines
on what constitutes plagiarism can be found at:

https://innsida.ntnu.no/wiki/-/wiki/English/Cheating+on+exams
We check all submitted code for similarities to other submissions. Pla-

giarism detection tools have been effective in the past at finding similar-
ities. They have gotten excellent over time, so it is inadvisable to try
and outsmart them. So don’t do it, not only because we will most likely
catch you, but because it is morally wrong and can undermine your aca-
demic integrity, even a long time into the future. For more references, see
https://www.google.com/search?q=resigns+over+plagiarism+allegations (statis-
tics on the 8th of August: 467’000 results).

5This is not an exhaustive list. Don’t copy code from any source

6

https://innsida.ntnu.no/wiki/-/wiki/English/Cheating+on+exams
https://www.google.com/search?q=resigns+over+plagiarism+allegations

Figure 1: Source: https://xkcd.com/378/

7 Questions

If you have any questions about this assignment, we encourage you to ask
the question on the course forum on Piazza. By that, you also help other
students who have the same questions in the future.

7

https://xkcd.com/378/

	Description
	Program development and testing framework
	Running a program in CPUlator

	Main Task: Palindrome Finder
	Input to Palindrome Finder
	Output of Palindrome Finder
	Optional Tasks

	Submission
	Assessment
	Similarity Checking and Plagiarism
	Questions

